$N_{\rm d}$ design axial load resistance (N) $N_{\rm dz}$ design axial load resistance of column, ignoring all bending P, P_e prestressing forces overall section dimension in a direction perpendicular to the p x axis (mm) Q moment of resistance factor (N/mm²) O_{ν} characteristic imposed load (N) overall section dimension in a direction perpendicular to the q y axis (mm) design lateral strength per unit area $q_{\rm lat}$ transverse or lateral pressure q_0, q_1, q_2 overall thickness of a wall or column (mm) effective thickness of a wall or column (mm) $t_{\rm ef}$ thickness of a flange in a pocket-type wall (mm) $t_{\rm f}$ Vshear force due to design loads (N) v, $v_{\rm h}$ shear stress due to design loads (N/mm²) $W_{\rm k}$ characteristic wind load (N) Z, Z₁, Z₂ section modulus (mm³) lever arm (mm) bending moment coefficient for laterally loaded panels in BS α 5628 ß capacity reduction factor for walls allowing for effects of slenderness and eccentricity partial safety factor for load $\gamma_{\rm f}$ partial safety factor for material $\gamma_{\rm m}$ partial safety factor for bond strength between mortar or $\gamma_{\rm mb}$ concrete infill and steel partial safety factor for compressive strength of masonry $\gamma_{\rm mm}$ partial safety factor for strength of steel $\gamma_{\rm ms}$ partial safety factor for shear strength of masonry $\gamma_{\rm mv}$ strain as defined in text ε stress block factors λ_1, λ_2 coefficients of friction $\mu_{\rm f}$ Poisson's ratio for brick and mortar $\nu_{\rm b}$, $\nu_{\rm m}$ Poisson's ratios in *x* and *y* direction $\nu_{\rm x}$, $\nu_{\rm v}$ μ orthogonal ratio A_s/bd ρ σ compressive stress compressive stress in brick $\sigma_{\!\scriptscriptstyle \mathrm{b}}$ compressive stress in mortar or in masonry $\sigma_{\!\scriptscriptstyle \mathrm{m}}$ stress in steel $\sigma_{\rm s}$ creep loss factor

EC6 (WHERE DIFFERENT FROM BS 5628)

$e_{\rm a}$	eccentricity resulting from construction inaccuracies
$e_{ m hi}$	eccentricity resulting from lateral loads
$e_{\rm i}$	eccentricity at top or bottom of wall
$e_{\mathbf{k}}$	eccentricity allowance for creep
$e_{\rm mk}$	eccentricity at mid-height of wall
$f_{\rm b}$	normalized unit compressive strength
$f_{\rm m}$	specified compressive strength of mortar
$f_{\rm tk}$	characteristic tensile strength of steel
$f_{ m vk}$	characteristic shear strength of masonry
$f_{\rm yk0}$	shear strength of masonry under zero compressive stress
f_{vk}	characteristic yield strength of steel
$f_{ m yk} \ I$	second moment of area
K	constant concerned with characteristic strength of masonry
k	stiffness factor
L	distance between centres of stiffening walls
$l_{\rm c}$	compressed length of wall
l_e	effective length or span
$M_{ m i}$	design bending moment at top or bottom of a wall
$M_{ m m}$	design bending moment at mid-height of a wall
$M_{ m RD}$	design bending moment of a beam
$N_{ m i}$	design vertical load at top or bottom of a wall
$N_{\scriptscriptstyle ext{RD}}$	design vertical load resistance per unit length
W	distributed load on a floor slab
$\gamma_{ m G}$	partial safety factor for permanent actions
$\gamma_{ m Q}$	partial safety factor for variable actions
$oldsymbol{\gamma}_{ ext{P}}$	partial safety factor for prestressing
$oldsymbol{\gamma}_s$	partial safety factor for steel
δ	shape factor for masonry units
$\boldsymbol{\Phi}_{i,m}$	capacity reduction factor allowing for the effects of
	slenderness and eccentricity
Ф∞	final creep coefficient
$ ho_{ m n}$	reduction factor for wall supported on vertical edges
$\sigma_{ m d}$	design compressive stress normal to the shear stress